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approximation is good only if the frequency ( f ) is relatively
large [14, pp. 155–158, 247]. Consequently, inaccuracy inWe present new algorithms for simulation of fractional Brownian

motion (fBm) which comprises a set of important random functions simulation of fBm, resulting from the Fourier filtering
widely used in geophysical and physical modeling, fractal image methods is inevitable (see [11, pp. 82–109] for general
(landscape) simulating, and signal processing. The new algorithms, discussion). Besides, Felder [15, pp. 172–174] proposed an
which are both accurate and efficient, allow us to generate not only a

algorithm which is based on Mandelbrot and von Ness’one-dimensional fBm process, but also two- and three-dimensional
work [2]. This algorithm can simulate accurately one-fBm fields. Q 1996 Academic Press, Inc.

dimensional fBm, but it is very time-consuming.
The purpose of this paper is to develop both accurate

1. INTRODUCTION and efficient methods for simulation of one- and two-
dimensional fBm. We also deal with the three-dimen-

Fractional Brownian motion (fBm) comprises a family sional simulation.
of random functions described by index H (0 , H , 1).
The earliest mention of them in literature could date back 2. SPECTRAL METHOD FOR
to 1940 [1]. These random functions were given a name ONE-DIMENSIONAL SIMULATION
‘‘fractional Brownian motion’’ by Mandelbrot and van
Ness [2] and joined the fractal family created by Mandel- The one-dimensional fBm with index H (0 , H , 1) is
brot [3]. In recent years, fBm has found applications in defined as [4, pp. 350–352; 14, p. 246; 15, p. 170]: (1) BH(x)
many physical sciences and engineering, such as simulation is continuous and BH(0) 5 0 with probability P 5 1; (2)
of landscape and seafloor topography [4, pp. 247–276; 5–6], for any x $ 0 and r $ 0, the increment BH(x 1 r) 2
geophysical modeling [7–9], and signal processing [10]. BH(x) follows the normal distribution with zero mean and
Thus, developing a good simulation algorithm for fBm is variance r0 r2H, that is
of not only theoretical, but also practical, importance.

Although a number of simulation algorithms have been P hBH(x 1 r) 2 BH(x) # zj
(1)proposed, none of them are satisfactory in terms of the

dual criteria ‘‘accuracy and efficiency.’’ Among the existing
5

1
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2r0r2HD du,
algorithms, two commonly used algorithms are midpoint
displacement and Fourier filtering methods [11, pp. 82–
109]. The midpoint displacement method proposed by where r0 is a constant. The argument x represents either
Fournier et al. [12] needs little computing time to generate time or spatial parameter. When H 5 1/2, fBm reduces to
a realization and is an efficient algorithm. However, as ordinary Brownian motion. The autocovariance function
criticized by Mandelbrot [13], this algorithm does not lead of fBm is [16, p. 407]
to a process that has stationary increments. The process
generated by this method is therefore no true fBm. The cov hBH(x), BH(x 1 r)j

(2)Fourier filtering method is based on the spectral property
of fBm. It uses the Fourier transform to generate a process 5

r0

2
[x2H 1 (x 1 r)2H 2 uru2H], x $ 0, x 1 r $ 0.

that has a spectral density S( f ) Y f (112H) [11, pp. 93–94,
105–109]. However, this power law relation S( f ) Y f (112H)

is derived by time (or spatial) average and is therefore an In devising an algorithm, all the previous methods deal
approximation, because fBm is non-stationary and does directly with fBm itself. This makes the simulation compli-

cated because of fBm’s non-stationary property. In thisnot possess a time- (or spatial) independent spectrum. This
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paper, we change the strategy. We deal directly with fBm’s C(r) 5 E1/2

21/2
S( f ) cos (2frf ) df, r 5 0, 61, 62, .... (6)

increments. The reason to do this is very simple. fBm
has stationary increments, and the increments themselves

The spectral density and the autocovariance function ofcomprise a discrete stationary process. It is much easier
a stationary process are mutually representable in termsto simulate a stationary process than to simulate a nonsta-
of the Fourier transform pair, such as shown in Eqs. (5) andtionary process. Dealing with the increments makes it pos-
(6) for the discrete case. Consequently, given the spectralsible to devise an algorithm that is both accurate and effi-
density function, a process can be easily generated usingcient. The increment of fBm is defined as
any spectral method. Here we use the classical method
proposed by Rice [18] and modified by Shinozuka and Jan

WH(x) 5 BH(x 1 Dx) 2 BH(x), x $ 0. (3) [19]. We rewrite the expression as

We term WH(x) fractional white noise, since when H 5 As
WH(x) 5 Ï2 ON/221

k52N/2
[S( fk) D f ]1/2 cos (2ffkx 1 fk),

(7)
WH(x) reduces to ordinary white noise. WH(x) is a discrete
stationary process with zero mean and variance r0 Dx2H.

x 5 0, 1, 2, ..., N,Instead of simulating fBm directly, we simulate the frac-
tional white noise WH(x). Then, fBm with index H can be

where S( f ) is the spectral density function given by Eq.obtained by summation of the fractional white noise with
(5), N is the total number of sampling in f, D f 5 1/N isthe same index H, which is similar to the simulation of the
the interval of sampling, fk 5 k D f are the values of fordinary Brownian motion by summation of the white
sampled, and fk are independent random angles uniformlynoise.
distributed between 0 and 2f. Wang [20] recognized thatWhen first looking at Eq. (3), it seems that Dx (increment
Eq. (7) could be calculated using a fast Fourier transformin x) determines the resolution of simulation, and different
(FFT). Expanding the cosine function on the right-handDx should be used to generate a process with different
side of Eq. (7), we obtainresolutions. In fact, the process with any resolution can be

simulated using the same Dx. This is because the paths of
fBm are self-affine fractals and scale invariant. The two

WH(x) 5 Ï2/N ON/221

k52N/2
FS Sk

NDG1/2 Fcos (fk) cos S2fkx
N D

(8)
processes BH(x) and BH(tx)/tH (where t is a constant)
are statistically identical. Therefore, the process with any
resolution can be obtained, once BH(x) is simulated. Here,

2 sin (fk) sin S2fkx
N DG , x 5 0, 1, 2, ..., N .we set Dx 5 1 and generate a process in which x takes

only integers, 0, 1, 2, ..., N.
The autocovariance function of WH(x) can be derived It is evident that Eq. (8) can be calculated using a complex

from Eq. (2), FFT algorithm. If one inputs [S(k/N)]1/2 cos (fk) as the
real part and [S(k/N)]1/2 sin (fk) as the imaginary part of
input complex data, then the real part of output complexC(r) 5 cov hWH(x), WH(x 1 r)j
data is WH(x).

5 E[hBH(x 1 1) 2 BH(x)j hBH(x 1 r 1 1) 2 BH(x 1 r)j] It is easy to prove that the autocovariance function of
a process simulated by Eq. (8) converges to the theoretical

5
r0

2
(ur 1 1u2H 1 ur 2 1u2H 2 2uru2H), r 5 0, 61, 62, ..., one. Let Cs(r) denote the autocovariance function of the

simulated process, it follows from Eq. (7) that
(4)

Cs(r) 5 E [WH(x), WH(x 1 r)]
Where E is the expectation operator. Since WH(x) is a

5 2 ON/221

k52N/2
S( fk) D f

(9)
stationary and discrete process, its power spectral density
function is [17, p. 225]

E[cos (2ffkx 1 fk) cos (2ffk(x 1 r) 1 fk)]

S( f ) 5 Oy
r52y

C(r) cos (2frf ), 2
1
2

# f #
1
2

, (5) 5 ON/221

k52N/2
S( fk) D f cos (2ffkr),

noting that fk are independent random variables and fol-where f denotes frequency (in hertz) or spatial frequency.
The autocovariance function C(r) may be represented by low the uniform distribution between 0 and 2f. Comparing

Eqs. (6) and (9) and taking the limit N R y, one obtainsthe inverse Fourier transform of S( f ) [17, p. 225]:
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inaccuracy in simulation, the range of r should be chosen
exactly the same as the length of WH(x) simulated. For
instance, if one wants to generate a process with a length
of 0 # x # N 2 1, the summation in Eq. (5) must be
calculated over the range of 2N/2 # r # N/2 2 1 (assume
C(r) 5 0 for r . N/2 2 1 and r , 2N/2).

With an FFT algorithm, the evaluation of Eq. (8) re-
quires of order N log2 N operations to generate a series
of N points of WH(x). Since the sample autocovariance
function converges to the theoretical autocovariance func-
tion with a rate of 1/N2, the new method presented above
is guaranteed to give rise to both accurate and fast simula-
tion of one-dimensional fBm. As mentioned above, two
commonly used simulation algorithms are the midpoint
displacement and the Fourier filtering [11, pp. 82–109].
The midpoint displacement algorithm requires about N
operations to generate a fBm process with a length N,
which is very efficient. However, this algorithm is of very
poor accuracy, because the process generated by it does
not have stationary increments and is therefore not true
fBm [13]. The Fourier filtering method also uses a FFT
algorithm to simulate fBm. Thus, the operations required
by this algorithm are the same as those required by the
method presented in this paper, that is, about N log2 N
operations. The Fourier filtering algorithm has a shortcom-
ing. It simulates fBm on the basis of the spectral property
other than the autocovariance function of fBm. The algo-
rithm generates a process that has a spectral density

FIG. 1. Comparison between theoretical autocovariance of the frac- S( f ) Y f (112H). As addressed by Falconer [14, pp. 155–158,
tional white noise and sample autocovariance calculated using ‘‘time’’

247], this power law relation S( f ) Y f (112H) is derived byaverage of a single realization simulated by the spectral method: (a) Index
time (or spatial) average and is therefore an approxima-H 5 0.2; (b) H 5 0.8.
tion, because fBm is non-stationary and does not possess
a time- (or spatial) independent spectrum. This approxima-
tion is poor when the frequency ( f ) is very small. As alim

NRy
Cs(r) 5 E1/2

21/2
S( f ) cos (2frf ) df 5 C(r). (10)

result, the deviation of the sample autocovariance function
from the theoretical one increases with increasing correla-
tion distance. Besides, the algorithm proposed by FelderShinozuka and Jan [19] have proven that the rate of conver-

gence to the theoretical autocovariance function is about [15, pp. 172–174] requires MN operations to generate a
process of N discrete points. The simulation accuracy de-1/N2, which is fast. As examples, we use Eq. (8) to simulate

two WH(x) realizations with index H 5 0.2 and 0.8, respec- pends on the parameter M. To ensure a good simulation,
M $ 700 is usually chosen, which shows that this algorithmtively (assume r0 5 1). Both have length N 5 4096. Figure

1 shows the comparison between the theoretical autocova- is inefficient. In summary, comparing the new algorithm
with previous algorithms, when their efficiency is compara-riance calculated using Eq. (4) and the sample autocovari-

ance calculated using ‘‘time’’ average of a single realiza- ble, the new algorithm is more accurate, and when their
accuracy is comparable, the new algorithm is more effi-tion generated.

It should be pointed out that the summation in Eq. (5) cient.
converges only when H # 1/2. In the case of H # 1/2, one
obtains a unique spectral density. This spectral density can 3. TURNING BANDS METHOD FOR
be used to simulate processes with any length. In the case TWO-DIMENSIONAL SIMULATION
of H . As, the spectral density diverges for uru R y, but it
converges for finite r. Since any simulation involves a finite In analogy to the one-dimensional case, the two-dimen-

sional fBm with stationary and isotropic increments canlength, one may calculate the spectral density function for
finite r. The spectral density calculated are different for be defined as [16, pp. 441–442]: (1) BH(x1 , x2) is continuous

and BH(0, 0) 5 0 with probability P 5 1; (2) for any x1 $different ranges of r. Therefore, in order to avoid any
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where i is the ith line, u is a unit vector along the line,
x ? ui denotes the projection of the vector x onto line i,
and Z(x ? u) is the value of the simulated one-dimensional
process at point x ? u.

Since the mean of the simulated one-dimensional pro-
cess is zero, one can readily prove that the simulated two-
dimensional field BH(x) has zero mean. Furthermore, be-
cause the lines are uniformly distributed from 0 to 2f, the
increments of BH(x) are guaranteed to be isotropic. Now, a
question that arises is ‘‘what is the one-dimensional process
that can give rise to the known autocovariance function
of two-dimensional fBm field?’’ Let Vs(r) denote the vari-
ance of increments of the two-dimensional process simu-
lated by the turning bands method. One can write from
Eq. (11) that

Vs(r) 5
1
L

E FHOL
i51

[Zi(x2 ? ui) 2 Zi(x1 ? ui)]J2G , (12)

FIG. 2. Schematic representation of the turning bands method. x is where r 5 ux2 2 x1u. Noting that the one-dimensional real-
a vector denoting a point on the field to be simulated and ui is a unit

izations along different lines are independent and assumedvector on the line i. t 5 x ? ui , denoting the position on the line at which
to have stationary increments, Eq. (12) reduces tothe value of the one-dimensional process is added to the simulated field

at the point x. ui is the azimuth of line i, which is uniformly distributed
from 0 to 2f. The two arrows on each line indicate that two identical
one-dimensional realizations are connected at the origin o and toward Vs(r) 5

1
L OL

i51
E [hZi(x2 ? ui) 2 Zi(x1 ? ui)j2]

(13)opposite directions.

5
1
L OL

i51
V1(h ? ui),0, x2 $ 0, r1 $ 0, r2 $ 0, the increment BH(x1 1 r1 , x2 1 r2) 2

BH(x1 , x2) follows the normal distribution with zero mean
and variance r0 r2H, where r 5 (r2

1 1 r2
2)1/2 and r0 is a constant. where V1 denotes the variance of increments of the one-

The turning bands method, originally proposed by Math- dimensional process and h 5 x2 2 x1 . Taking the limit
eron [21], was improved by Mantoglou and Wilson [22] to L R y yields
simulate multidimensional stationary random fields. It is
a fast simulation algorithm. The fundamental of the turning

V2(r) 5 lim
LRy

Vs(r)
bands method is to transform a multidimensional simula-
tion into the sum of a series of equivalent one-dimensional

5 E [V1(h ? u)]simulations. Although in [22] the applicability of the turn-
ing bands method is restricted to stationary processes, we 5 E

c
V1(h ? u) f (u) du,

demonstrate here that it is also applicable to simulation
of the two-dimensional non-stationary fBm.

where V2(r) 5 r0 r2H is the theoretical variance of incre-With reference to Fig. 2, along each line we generate
ments of two-dimensional fBm (r 5 uhu 5 ux2 2 x1u), ctwo identical one-dimensional realizations (the second one
denotes the unit circle, and f (u) is the density function ofcan be obtained by duplicating the first one), and we con-
u. Since the lines in Fig. 2 are uniformly distributed fromnect them at the origin (towards opposite directions). The
0 to 2f, f (u) 5 1/(2f). We define two orthogonal axes xsimulated one-dimensional processes along different lines
and y with the origin at the point of x1 and the y-axis inare independent. At this moment, we only assume that
the direction of the vector h 5 x2 2 x1 . In polar coordinates,these one-dimensional processes are non-stationary with
h ? u 5 r sin u and du 5 du, we havezero mean and stationary increments. Suppose that there

are in total L lines which are uniformly distributed from
0 to 2f. We assign the two-dimensional field at a point x V2(r) 5

1
2f

E2f

0
V1(r sin u) du. (15)

the value BH(x) given by

Changing the integral variable from u to k, where k 5 rBH(x) 5
1

ÏL
OL
i51

Zi(x ? ui), (11)
sin u, and replacing V2(r) with r0 r2H, Eq. (15) becomes
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Er

0

V1(k)
(r2 2 k2)1/2 dk 5

f
2

r0r2H. (16)

This is a standard singular Volterra integral equation of
the first kind, the solution of which can be found from text
books, e.g., [23, pp. 172–173]. The solution is

V1(k) 5
Ïf G(1 1 H)

G(As 1 H)
r0k

2H. (17)

Eq. (17) shows that, in order to preserve the theoretical
correlation for the two-dimensional fBm, the one-dimen-
sional process to be simulated must be one-dimensional
fBm, but with the variance of its increments multiplied by
a factor which is a function of the index H. This result is
not surprising, because any profile of two-dimensional fBm
is one-dimensional fBm. The simulation technique for one-
dimensional fBm has been discussed in the previous sec-
tion. Therefore, to simulate the two-dimensional fBm, one
just needs to change the autocovariance function given in
Eq. (4) from C(r) to f1/2G(1 1 H)C(r)/G(1/2 1 H) and
generate some one-dimensional fBm realizations. A two-
dimensional fBm realization with r0 r2H (the variance of
increments) can be obtained using the simple algorithm
given in Eq. (11).

Errors in simulation using the turning bands method
come from a number of sources, such as the finite number
of lines (L), the error in simulation of one-dimensional FIG. 3. Comparison between theoretical variance of increments of
fBm, and the discretization along the lines (band width). the two-dimensional fractional Brownian motion and variance of incre-
As mentioned above, the spectral method presented in ments of the process simulated by the turning bands method using a

different number of lines. The inset shows the details: (a) H 5 0.2; (b)this paper can simulate accurately one-dimensional process
H 5 0.8.fBm, so the error resulting from the one-dimensional simu-

lation is minor. The effect of the discretization along the
lines on simulation accuracy has been discussed in [22],

integration). The value of the summation is not only awhich is also applicable to the present case of simulating
function of distance r and the number of lines, but alsofBm. Here, we only discuss the effect of the number of
affected by positions of the points x1 and x2 (r 5 ux2 2 x1u).lines on simulation accuracy. Mantoglou and Wilson [22]
For this reason, the value of the summation may be slightlyhave found that evenly distributed lines give rise to a much
different for different positions of points lying the samefaster rate of convergence to the target autocovariance
distance r apart. In other words, the increments of thethan randomly distributed lines, so the approach of ran-
simulated two-dimensional field are not perfectly isotropic.domly generating lines is never used. Let « be the variance
It can be readily proven that the largest error occurs whenerror of increments for evenly distributed lines; it fol-
the points lie on one of the lines, and the error is thelows that
smallest when the points lie on the bisector between two
lines. Nevertheless, as the number of lines increases, the

« 5 Vs(r) 2 V2(r)
variance of increments of the simulated random field con-
verges to the theoretical one, and the increments become

5
1
L OL

i51
V1(r sin ui) 2

1
f
Ef

0
V1(r sin u) du (18)

isotropic. As examples, Fig. 3 shows the variance error of
increments of the two-dimensional field calculated using
Eq. (18) for the case where the points lie along a line.5

1
L OL

i51
V1(r sin ui) 2 r0 r2H.

For both examples, as the number of lines increases, the
variance of increments of the simulated process converges
fast to the theoretical variance. As far as the number ofEquation (18) shows that the error « results from the ap-

proximation of integration by summation (or numerical lines is concerned, we find that, depending on the accuracy
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desired, 20 lines should be sufficient to do a good simu-
V3(r) 5

1
4f

E2f

0
Ef

0
V1(r cos f) sin f df du. (20)lation.

The Fourier filtering method is often used to simulate
two-dimensional fBm [11, pp. 105–109]. Employing a FFT Changing integral variables from u and f to u and k, where
algorithm, this method requires (N log2 N)2 operations to k 5 r cos f, and replacing V3(r) by r0 r2H yields
generate a two-dimensional fBm field of N by N discrete
points. The cost for the turning bands method comprises Er

0
V1(k) dk 5 r0 r2H11. (21)mainly two parts: (1) generating line processes and (2)

evaluating Eq. (11). The former requires LN log2 N opera-
tions and the latter requires LN2, where L represents the

This simple integral equation can be readily solved. Thenumber of lines. Consequently, the total cost is of order
solution is V1(k) 5 (2H 1 1)r0 k2H, which shows that theLN2. Since 20 lines (L 5 20) are sufficient to do an accurate
one-dimensional process to be simulated must be the fBmsimulation. The turning bands method presented in this
with the variance of increments multiplied by a factorpaper is superior to the Fourier filtering method in terms
2H 1 1.of both accuracy and efficiency.

Similar to the two-dimensional case, the simulation accu-
racy for the three-dimensional fBm depends on the number

4. TURNING BANDS METHOD FOR of lines (L), the accuracy in simulation of the one-dimen-
THREE-DIMENSIONAL SIMULATION sional fBm, and the resolution of discretization along the

lines (band width). The variance error («) of the increments
To date, only one- and two-dimensional fBm have found for evenly distributed lines can be expressed as

applications. However, if necessary, the aforementioned
turning bands method can be easily extended to simulation

« 5 Vs(r) 2 V3(r)
(22)of three-dimensional fBm field. The three-dimensional

fBm can be defined as: (1) BH(x1 , x2 , x3) is continuous and
5

1
L OL

i51
V1(r cos fi) 2 r0 r2H.BH(0, 0, 0) 5 0 with probability P 5 1; (2) for any x1 $

0, x2 $ 0, x3 $ 0, r1 $ 0, r2 $ 0, and r3 $ 0, the increment
BH(x1 1 r1 , x2 1 r2 , x3 1 r3) 2 BH(x1 , x2 , x3) follows the

For the three-dimensional simulation, more lines are re-normal distribution with zero mean and variance r0 r2H,
quired to achieve the same simulation accuracy as that forwhere r 5 (r2

1 1 r2
2 1 r2

2)1/2 and r0 is a constant.
the two-dimensional case.To simulate the three-dimensional field, one just changes

the distribution of lines in Fig. 2 from uniform distribution
on the circle to approximately uniform distribution on the CONCLUSIONS
sphere (note that when L is outside the set h4, 6, 8, 12, 20j,

In this paper, two new methods are proposed to simulatea uniform distribution of points over the surface of a sphere
one-dimensional and multidimensional fBm. The main re-does not exist; that is, the angle between any two lines
sults can be summarized as follows:cannot be made identical. One can only attempt to make

the distribution of lines approximately uniform). The algo- (1) The increments of one-dimensional fBm constitute
rithm to assign the value of BH at a point (x1 , x2 , x3) is still a discrete stationary process, which is termed fractional
the same as Eq. (11), and the expression for the variance of white noise. Instead of simulating fBm directly, we propose
increments of the simulated field is similar to Eq. (13). a FFT algorithm (on the basis of a classical spectral
Because the lines are approximately uniformly distributed method) to simulate the fractional white noise. Then fBm
on the sphere, the sensity function of u (unit vector on the can be obtained by summation of the fractional white noise.
lines) is f (u) 5 1/(4f). It follows from Eq. (14) that The autocovariance function of the simulated process con-

verges as 1/N2 to the theoretical one.

(2) The turning bands method, which was used pre-V3(r) 5
1

4f
E

c
V1(h ? u) du, (19)

viously to simulate multidimensional stationary processes,
is introduced to simulate two-dimensional non-stationary
fBm. It is proven that, in order to preserve the knownwhere c denotes the unit sphere. In analog to the two-

dimensional analysis, we define orthogonal axes (x, y, z) covariance function for the two-dimensional fBm, the line
process in the turning bands method must be one-dimen-with the origin at the point of x1 and with the z axis in the

direction of the vector h 5 x2 2 x1 . In spherical coordinates, sional fBm with the variance multiplied by a factor. Thus,
two-dimensional fBm can be simulated by the summationwe can write h ? u 5 r cos f (where r 5 uhu), and

du 5 sin f df du. Then, Eq. (19) becomes of a series of line processes, each of which is an independent
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